Blog

🖖

Tensoring with Quotients

Taken from: (?). Exercise Let $I$ be an ideal on $R$ and $M$ an $R$-module. Prove that \[M\otimes_R \frac{R}{I}\cong \frac{M}{IM}.\] In particular: $M\otimes_R R\cong R\otimes_R M\cong M$. Proof Define the function \[\begin{align*} \varphi: M \times \frac{R}{I} &\to \frac{M}{IM}\\[3mm] (m, \overline{r}) &\mapsto \overline{...

Read more